Tucker-Davis Symposium on Advances and Perspectives in Auditory Neurophysiology (APAN III)

Friday, November 11, 2005

Washington Convention Center (Room: 144A)

 

Scientific Program

 

8:30-9:00         Registration and Poster set-up (all posters)

9:00-9:10         Introduction (Xiaoqin Wang)

9:10-10:00       Keynote: Auditory cortex plasticity. Michael Merzenich (University of California, San Francisco)

 

Slide Session I (Chair: Amy Poremba)

 

10:00-10:20 Multiple auditory tasks and the single cortical neuron – salient temporal and spectral cues drive orthogonal, dynamic, task-related receptive field plasticity in primary auditory cortex. Jonathan B. Fritz1, Mounya Elhilali1, Pingbo Yin1, Nicol Harper2, Kevin Donaldson1, & Shihab A. Shamma1 (1. Neural Systems Lab, Center for Acoustic & Auditory Research, University of Maryland, College Park, MD, USA, 2.University College, London, U.K.)

 

10:25-10:45 Role of primary auditory cortex in training-induced adaptation to altered spatial cues. A.J. King; F.R. Nodal; H. Hartung (Lab of Physiology, Univ of Oxford, Oxford, United Kingdom)

 

10:50-11:50     Poster Session & Coffee Break

 

11:50-12:10 Frequency selectivity and context sensitivity of single neurons in human auditory cortex. Israel Nelken, Yael Bitterman, Roy Mukamel, Rafi Malach and Itzhak Fried (Dept. of Neurobiology, Hebrew University, Jerusalem, Israel)

 

12:15-12:35 Modulation of auditory responses by modality-specific attention in rat primary auditory cortex. Lung-Hao Tai & Tony Zador (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA)

 

12:40-1:50      Lunch (on your own)

 

Slide Session II (Chair: Mal Semple)

 

2:00-2:20 The neurobiology and behavior of a natural primate vocal behavior. Cory T. Miller, Ashley Pistorio, Stewart Hendry, & Xiaoqin Wang (Dept. Biomedical Engineering, Johns Hopkins University, Baltimore, MD)

 

2:25-2:45 The modulation spectra of rhesus vocalizations and the responses of neurons in the rhesus ventrolateral prefrontal cortex to stimuli with these spectrotemporal properties. Y.E. Cohen, B.E. Russ, D.L. Jung, R. Kiringoda, P. Gill, F.E., Theunissen (Department of Psychological and Brain Sciences, Dartmouth College, Hanover NH 03755; Department of Psychology, University of California, Berkeley, CA 94720)

 

2:50-3:10 Looming versus receding signals in rhesus monkey auditory cortex. Joost X. Maier, Nikos K. Logothetis & Asif A. Ghazanfar (MPI Biological Cybernetics, Tuebingen, Germany)

 

3:15-3:35 Neural responses in the awake rabbit inferior colliculus to tones with amplitude modulation depths near psychophysical detection thresholds. Paul C. Nelson, Anita R. Sterns, and Laurel H. Carney (Institute for Sensory Research and Dept. of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY)

 

3:40-4:00 The neural basis of auditory stream segregation in the primary auditory cortex of awake monkeys. Christophe Micheyl1, Biao Tian2, Robert P. Carlyon3, Josef P. Rauschecker2 (1.Research. Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA; 2.Georgetown. Institute for Cognitive and Computational Sciences, Georgetown University Medical Center, Washington, DC, USA; 3.Cognition and Brain Sciences Unit, Medical Research Council, Cambridge, Great Britain)

 

4:05-4:25 High-Field fMRI Reveals Auditory Cortical Fields in the Macaque Monkey. C.I. Petkov; C. Kayser; M. Augath; T. Steudel; N.K. Logothetis (Physiology of Cognitive Processes, Max-Planck Institute for Biological Cybernetics, Tuebingen, Germany)

 

4:30-6:00        Poster Session (continue) & Coffee Break

 

4:30-6:00         Cash-bar

 

POSTERS (listed alphabetically, by first author)

 

Allen, P.D.1; K. Barsz2; J.R. Ison1,2; J.P. Walton2. Effects of age on behavioral and electrophysiological measures of auditory signal-in-noise processing. (1.Brain & Cognitive Science, University of Rochester, Rochester, NY, USA 2.Otolaryngology, University of Rochester Medical Center, Rochester, NY, USA)

 

Averbeck, B.B. and L.M. Romanski. Hidden markov models and the encoding of species-specific vocalizations in macaque prefrontal cortex.  (Dept. Neurobiology & Anatomy, University of Rochester, Rochester, NY, USA)

 

Bendor, D. and X. Wang. Neural Coding of Repetition Rate and Temporal Regularity in Auditory Cortex. (Dept. Biomedical Engineering, Johns Hopkins University, Baltimore, MD)

 

Brimijoin, Wm. Owen 2, W.E. O’Neill1,2,3. Measuring Inhibition and Facilitation in the Inferior Colliculus Using Vector-Based Analysis of Spectrotemporal Receptive Fields. (Depts. of 1Neurobiology & Anatomy, 2Brain & Cognitive Sciences, 3Center for Navigation and Communication Sciences, University of Rochester, Rochester, NY 14642)

 

DeWeese, M.R. and A.M. Zador. A rodent model for purely auditory selective attention. (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA)

 

Fishman, Y. and M. Steinschneider. Initial Observations Reflecting Representations of Inharmonicity in Auditory Cortex of the Awake Monkey. (A. Einstein Coll. of Med., Bronx, NY 10461)

 

Heiser, M.A.; R. E. Beitel; M. Vollmer; and C.E. Schreiner. Neuronal Responses to Frequency-Modulated Sweeps and Formant-like Glides In Noise In Primary Auditory Cortex of Awake Squirrel Monkeys. (W.M. Keck Center for Integrative Neuroscience, Coleman Memorial Laboratory, Department of Otolaryngology-HNS, UCSF, San Francisco, CA, USA)

 

Hromadka, T. and A.M. Zador.  Sound discrimination in head-fixed rats. (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA)

 

Husain, F.T. and B. Horwitz. Neural Modeling and Imaging of Auditory Perception; Application to Auditory Continuity Illusion. (Brain Imaging and Modeling Section, NIDCD, NIH, Bethesda, MD 20892)

 

Issa, E.; A. Pistorio; and X. Wang. Effects of Sleep on Neural Responses to Sounds in Auditory Cortex. (Dept. Biomedical Engineering, Johns Hopkins University, Baltimore, MD)

 

Kudoh, M.; Y. Nakayama and K. Shibuki. Roles of the auditory cortex in discrimination learning of complex sounds with multiple spectral poles. (Dept. Neurophysiol., Brain Res. Inst., Niigata Univ., Niigata, 951-8585, Japan)

 

Lakatos, P.1; M.N. O'Connell1; A. Mills1; C. Rajkai1,2; G. Karmos2; and C.E. Schroeder1,3. Functional significance of multisensory input in auditory processing. (1.Cognitive Neuroscience & Schizophrenia Program, Nathan Kline Inst., Orangeburg, NY, USA 2.Inst. Psychology, Hungarian Acad. Sci., Budapest, Hungary 3. Progr. Cogn. Neurosci., City College of CUNY, New York, NY, USA)

 

Lima, S.Q.; C.K. Machens; C.D. Brody; and A.M. Zador. Cortical Mechanisms of Working Memory. (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA)

 

Liu, R.C.1 and C.E. Schreiner2. Behavioral salience and neural coding: maternal effects on pup call coding in the mouse cortex. (1.Emory Biology, Atlanta, GA, USA;  2.W.M. Keck Center for Integrative Neuroscience, Coleman Memorial Laboratory, Department of Otolaryngology-HNS, UCSF, San Francisco, CA, USA)

 

Mathiak, K.; H. Ackermann; A. Rapp; K. Swirszcz; A. Riecker; T.T.J. Kircher. Neuromagnetic oscillations and hemodynamic correlates of P50 suppression in schizophrenia. (Klinik für Psychiatrie und Psychotherapie, UK Aachen Pauwelsstr, 30D-52074 Aachen, Germany)

 

Muñoz, M.; R.C. Saunders; and M. Mishkin.  Medial Temporal Removals Preserve Projections from Auditory Belt and Parabelt to Frontal Cortex. (Lab. Neuropsychol., NIMH, Bethesda, MD 20892)

 

Porter, K.K.; R.R. Metzger; U. Werner-Reiss; A.M. Underhill; and J.M. Groh. Visual Responses in Auditory Neurons of the Primate Inferior Colliculus. (Dept. of Psychol. and Brain Sci. & Ctr. for Cognitive Neurosci., Dartmouth College, Hanover NH 03755)

 

Riquimaroux, H. and Y. Sasaki. Robustness found in synthesized coo-like sound discrimination by Japanese macaques. (Dept. of Knowledge Engineering and Computer Sciences, Doshisha University Kyotanabe, Kyoto 610-0321, Japan)

 

Romanski, L.M.; T. Sugihara; D.J. Knoedl; and M.D. Diltz. Integration of auditory and visual communication information in the primate ventrolateral prefrontal cortex. (University of Rochester Medical Center, Rochester, NY, USA)

 

Sloan, A.1 and R. Rennaker1,2. Habituation in Awake Rat A1 is Dependent on Stimulus Presentation Rate. (1.OU Bioengineering Center, University of Oklahoma, Norman, OK, 2.Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK)

 

Spitzer, M.W. 1,3; D.R.F. Irvine1; M.G.P. Rosa2,3. Organization of thalamic inputs to marmoset auditory cortex. (Departments of 1.Psychology, 2.Physiology and 3.Monash University Centre for Brain and Behaviour, Monash University, Clayton, Victoria, Australia)

 

Steinschneider, M. and Y. Fishman. Representation of the Precedence Effect and its Breakdown in Auditory Cortex of the Awake Monkey. (A. Einstein Coll. of Med., Bronx, NY 10461)

 

Strayer-Benton, K.M. ; B.E. Russ; R. Kiringoda; K.L. Abrahamsen; Y.E. Cohen. LIP neurons are modulated by endogenous central cues. (Department of Psychological and Brain Sciences, Dartmouth College, Hanover NH 03755)

 

Sutter, M.L. Population codes and illusory fill-in. (Neurobiology, Physiology, and Behavior; Center for Neuroscience; University of California, Davis; Davis, CA 95616)

 

Swirszcz, K.1,2,3; J. Tintera4; F. Jiru4; J. Syka3. fMRI correlates of motor-to-sensory feedback at the auditory cortex. (1.Center for Neurology, University of Tübingen, Germany; 2.Faculty of Psychology, Warsaw University, Poland; 3.Institute of Experimental Medicine ASCR, Prague; 4. Institute of Clinical and Experimental Medicine, Prague, Czech Republic)

 

Tollin, D.J. Pooling of information across lateral superior olive neurons is not necessary for fine interaural level difference discrimination thresholds and virtual acoustic space minimum audible angles. (Dept Physiol & Biophysics, Univ Colorado Hlth Sci Ctr, Aurora, CO, USA)

 

Vollmer, M.; R.E. Beitel;  M.A. Heiser; and C.E. Schreiner. Neuronal Responses in Primary Auditory Cortex Evoked by Amplitude-Modulated Signals in Awake Squirrel Monkey. (W.M. Keck Center for Integrative Neuroscience, Coleman Memorial Laboratory,    Department of Otolaryngology-HNS, UCSF, San Francisco, CA, USA)

 

Wang, X. ; T. Lu; L. Liang; R.K. Snider. Representations of Sound Intensity in Auditory Cortex of Awake Monkeys. (Dept. Biomedical Engineering, Johns Hopkins University, Baltimore, MD)

 

Werner-Reiss, U.; K.K. Porter; N.T. Greene; D.T. Larue; J.A. Winer; and J.M. Groh. Eye position signals are distributed throughout the primate inferior colliculus. (Dept. of Psychol. and Brain Sci., Dartmouth College, Hanover, NH 03755; Dept. of Molecular and Cell Biology, Univ. California, Berkeley, CA 94720)

 

Xu, S. an X. Wang. Representations of three-dimensional spatial locations in auditory cortex of awake monkeys. (Dept. Biomedical Engineering, Johns Hopkins University, Baltimore, MD)